跳转至

🔥AI副业赚钱星球

点击下面图片查看

郭震AI

四、列表专题

编辑日期: 2024-11-28 文章阅读: 72

四、列表专题

1 创建列表

列表是一个容器,使用一对中括号[]创建一个列表。 创建一个空列表:

a = [] # 空列表

创建一个含有 5 个整型元素的列表a

a = [3,7,4,2,6]

列表与我们熟知的数组很相似,但又有很大区别。

一般数组内的元素要求同一类型,但是列表内可含有各种不同类型,包括再嵌套列表。

如下,列表a包含三种类型:整形,字符串,浮点型:

img

如下列表a嵌套两个列表:

img

2 访问元素

列表访问主要包括两种:索引和切片。

如下,访问列表a可通过我们所熟知的正向索引,注意从0开始;

img

也可通过Python特有的负向索引,

即从列表最后一个元素往前访问,此时索引依次被标记为-1,-2,...,-5 ,注意从-1开始。

除了以上通过索引访问单个元素方式外,

还有非常像matlab的切片访问方式,这是一次访问多个元素的方法。

切片访问的最基本结构:中间添加一个冒号。

如下切片,能一次实现访问索引为1到4,不包括4的序列:

In [1]: a=[3,7,4,2,6]

In [2]: a[1:4]
Out[2]: [7, 4, 2]

img

Python支持负索引,能带来很多便利。比如能很方便的获取最后三个元素:

In [1]: a=[3,7,4,2,6]

In [3]: a[-3:]
Out[3]: [4, 2, 6]

除了使用一个冒号得到连续切片外,

使用两个冒号获取带间隔的序列元素,两个冒号后的数字就是间隔长度:

In [1]: a=[3,7,4,2,6]

In [7]: a[::2] # 得到切片间隔为2
Out[7]: [3, 4, 6]

其实最全的切片结构:start:stop:interval,如下所示,获得切片为:索引从15间隔为2:

In [6]: a=[3,7,4,2,6]

In [7]: a[1:5:2]
Out[7]: [7, 2]

3 添加元素

列表与数组的另一个很大不同,使用数组前,需要知道数组长度,便于从系统中申请内存。

但是,列表却不需要预先设置元素长度。

它支持任意的动态添加元素,完全不用操心列表长短。

它会随着数组增加或删除而动态的调整列表大小。

这与数据结构中的线性表或向量很相似。

添加元素通常有两类场景。

append一次添加1个元素,insert在指定位置添加元素:

In [8]: a=[3,7,4,2,6]
In [9]: a.append(1) # append默认在列表尾部添加元素
In [10]: a
Out[10]: [3, 7, 4, 2, 6, 1]

In [11]: a.insert(2,5) # insert 在索引2处添加元素5
In [12]: a
Out[12]: [3, 7, 5, 4, 2, 6, 1]

extend或直接使用+实现一次添加多个元素:

In [13]: a.extend([0,10])# 一次就地添加0,10两个元素
In [14]: a
Out[14]: [3, 7, 5, 4, 2, 6, 1, 0, 10]

In [15]: b = a+[11,21] # + 不是就地添加,而是重新创建一个新的列表
In [16]: b
Out[16]: [3, 7, 5, 4, 2, 6, 1, 0, 10, 11, 21]

这里面有一个重要细节,不知大家平时注意到吗。

extend 方法实现批量添加元素时未创建一个新的列表,而是直接添加在原列表中,这被称为in-place,就地。而b=a+list对象实际是创建一个新的列表对象,所以不是就地批量添加元素。

但是,a+=一个列表对象+=操作符则就会自动调用extend方法进行合并运算。大家注意这些微妙的区别,不同场景选用不同的API,以此高效节省内存。

4 删除元素

删除元素的方法有三种:remove,pop,del.

remove直接删除元素,若被删除元素在列表内重复出现多次,则只删除第一次:

In [17]: a=[1,2,3,2,4,2]
In [18]: a.remove(2)
In [19]: a
Out[19]: [1, 3, 2, 4, 2]

pop方法若不带参数默认删除列表最后一个元素;若带参数则删除此参数代表的索引处的元素:

In[19]: a = [1, 3, 2, 4, 2]
In [20]: a.pop() # 删除最后一个元素
Out[20]: 2
In [21]: a
Out[21]: [1, 3, 2, 4]

In [22]: a.pop(1) # 删除索引等于1的元素
Out[22]: 3
In [23]: a
Out[23]: [1, 2, 4]

delpop相似,删除指定索引处的元素:

In [24]: a = [1, 2, 4]
In [25]: del a[1:] # 删除索引1到最后的切片序列
In [26]: a
Out[26]: [1]

5 list 与 in

列表是可迭代的,除了使用类似c语言的索引遍历外,还支持for item in alist这种直接遍历元素的方法:

In [28]: a = [3,7,4,2,6]
In [29]: for item in a:
    ...:     print(item)
3
7
4
2
6

in 与可迭代容器的结合,还用于判断某个元素是否属于此列表:

In [28]: a = [3,7,4,2,6]
In [30]: 4 in a
Out[30]: True

In [31]: 5 in a
Out[31]: False

6 list 与数字

内置的list与数字结合,实现元素的复制,如下所示:

In [32]: ['Hi!'] * 4
Out[32]: ['Hi!', 'Hi!', 'Hi!', 'Hi!']

表面上这种操作太方便,实际确实也很方便,比如我想快速打印20个-,只需下面一行代码:

In [33]: '-'*20
Out[33]: '--------------------'

使用列表与数字相乘构建二维列表,然后第一个元素赋值为[1,2],第二个元素赋值为[3,4],第三个元素为[5]

In [34]: a = [[]] * 3
In [35]: a[0]=[1,2]
In [36]: a[1]=[3,4]
In [37]: a[2]=[5]
In [38]: a
Out[38]: [[1, 2], [3, 4], [5]]

7 列表生成式

列表生成式是创建列表的一个方法,它与使用append等API创建列表相比,书写更加简洁。

使用列表生成式创建1到50的所有奇数列表:

a=[i for i in range(50) if i&1]

8 其他常用API

除了上面提到的方法外,列表封装的其他方法还包括如下:

clear`,`index`,`count`,`sort`,`reverse`,`copy

clear 用于清空列表内的所有元素

index 用于查找里面某个元素的索引:

In [4]: a=[1,3,7]

In [5]: a.index(7)
Out[5]: 2

count 用于统计某元素的出现次数:

In [6]: a=[1,2,3,2,2,5]

In [7]: a.count(2) # 元素2出现3次
Out[7]: 3

sort 用于元素排序,其中参数key定制排序规则。如下列表,其元素为元祖,根据元祖的第二个值由小到大排序:

In [8]: a=[(3,1),(4,1),(1,3),(5,4),(9,-10)]

In [9]: a.sort(key=lambda x:x[1])

In [10]: a
Out[10]: [(9, -10), (3, 1), (4, 1), (1, 3), (5, 4)]

reverse 完成列表反转:

In [15]: a=[1,3,-2]

In [16]: a.reverse()

In [17]: a
Out[17]: [-2, 3, 1]

copy 方法在下面讲深浅拷贝时会详细展开。

9 列表实现栈

列表封装的这些方法,实现这个常用的数据结构比较容易。栈是一种只能在列表一端进出的特殊列表,pop方法正好完美实现:

In [23]: stack=[1,3,5]

In [24]: stack.append(0) # push元素0到尾端,不需要指定索引

In [25]: stack
Out[25]: [1, 3, 5, 0]

In [26]: stack.pop() # pop元素,不需指定索引,此时移出尾端元素
Out[26]: 0

In [27]: stack
Out[27]: [1, 3, 5]

由此可见Python的列表当做栈用,完全没有问题,push 和 pop 操作的时间复杂度都为 O(1)

但是使用列表模拟队列就不那么高效了,需要借助Python的collections模块中的双端队列deque实现。

10 列表包含自身

列表的赋值操作,有一个非常有意思的问题,大家不妨耐心看一下。

In [1]: a=[1,3,5]

In [2]: a[1]=a  # 列表内元素指向自身

这样相当于创建了一个引用自身的结构。

打印结果显示是这样的:

In [3]: a
Out[3]: [1, [...], 5]

中间省略号表示无限循环,这种赋值操作导致无限循环,这是为什么?下面分析下原因。

执行 a = [1,3,5] 的时候,Python 做的事情是首先创建一个列表对象 [1, 3, 5],然后给它贴上名为a的标签。

执行 a[1] = a 的时候,Python 做的事情则是把列表对象的第二个元素指向a所引用的列表对象本身。

执行完毕后,a标签还是指向原来的那个对象,只不过那个对象的结构发生了变化。

从之前的列表 [1,3,5] 变成了 [1,[...], 5],而这个[...]则是指向原来对象本身的一个引用。

如下图所示:

img

可以看到形成一个环路:a[1]--->中间元素--->a[1],所以导致无限循环。

11 插入元素性能分析

与常规数组需要预先指定长度不同,Python 中list不需要指定容器长度,允许我们随意的添加删除元素。

但是这种便捷性也会带来一定副作用,就是插入元素的时间复杂度为O(n),而不是O(1),因为insert会导致依次移动插入位置后的所有元素。

为了加深对插入元素的理解,特意把cpython实现insert元素的操作源码拿出来。

可以清楚看到insert元素时,插入位置处的元素都会后移一个位置,因此插入元素的时间复杂为O(n),所以凡是涉及频繁插入删除元素的操作,都不太适合用list.

static int
ins1(PyListObject *self, Py_ssize_t where, PyObject *v)
{
    assert((size_t)n + 1 < PY_SSIZE_T_MAX);
    if (list_resize(self, n+1) < 0)
        return -1;

    if (where < 0) {
        where += n;
        if (where < 0)
            where = 0;
    }
    if (where > n)
        where = n;
    items = self->ob_item;
    //依次移动插入位置后的所有元素
    // O(n) 时间复杂度
    for (i = n; --i >= where; ) 
        items[i+1] = items[i];
    Py_INCREF(v);
    items[where] = v;
    return 0;
}

12 深浅拷贝

list 封装的copy 方法实现对列表的浅拷贝,浅拷贝只拷贝一层,具体拿例子说:

In [38]: c =[1,3,5]

In [39]: cc = c.copy()

ccc分别指向一片不同内存,示意图如下:

img

这样修改cc的第一个元素,原来c不受影响:

In [40]: cc[0]=10 # 修改cc第一个元素

In [41]: cc
Out[41]: [10, 3, 5]

In [42]: c # 原来 c 不受影响
Out[42]: [1, 3, 5]

但是,如果内嵌一层列表,再使用copy时只拷贝一层:

In [32]: a=[[1,3],[4,2]]

In [33]: ac = a.copy()

In [34]: ac
Out[34]: [[1, 3], [4, 2]]

img

上面的示意图清晰的反映出这一点,内嵌的列表并没有实现拷贝。因此再修改内嵌的元素时,原来的列表也会受到影响。

In [35]: ac[0][0]=10

In [36]: ac
Out[36]: [[10, 3], [4, 2]]

In [37]: a
Out[37]: [[10, 3], [4, 2]]

要想实现深度拷贝,需要使用Python模块copy中的deepcopy方法。

13 列表可变性

列表是可变的,可变的对象是不可哈希的,不可哈希的对象不能被映射,因此不能被用作字典的键。

In [51]: a=[1,3]
In [52]: d={a:'不能被哈希'} #会抛出如下异常

但是,有时我们确实需要列表对象作为键,这怎么办?

可以将列表转化为元祖,元祖是可哈希的,所以能作为字典的键。


Python 20个专题完整目录:

Python前言

Google Python代码风格指南

Python数字

Python正则之提取正整数和大于0浮点数

Python字符串

CSV读写乱码问题

Unicode标准化

Unicode, UTF-8, ASCII

Python动态生成变量

Python字符串对齐

Python小项目1:文本句子关键词的KWIC显示

Python列表

Python流程控制

Python编程习惯专题

Python函数专题

Python面向对象编程-上篇

Python面向对象编程-下篇

Python十大数据结构使用专题

Python包和模块使用注意事项专题

Python正则使用专题

Python时间专题

Python装饰器专题

Python迭代器使用专题

Python生成器使用专题

Python 绘图入门专题

Matplotlib绘图基础专题

Matplotlib绘图进阶专题

Matplotlib绘图案例

NumPy图解入门

京ICP备20031037号-1